

AUTOMATION 2000 20 rue de la pommeraie, 78310 Coignières – FRANCE Tel: +33-1-3461-4232 – Fax: +33-1-3461-8919 info@automation2000.com – www.automation2000.com

TECHNICAL INSTRUCTIONS TDC & TDCI

TECH. INSTRUCTIONS	Page	Nr. T/NOT-0002	Date: 21/03/2022	Rev.
TDC & TDCI	1	INF. 1/1101-0002	Date: 21/05/2022	3

1- INTRODUCTION

Equipped with two independent thermostats compensated in temperature, TDC and TDCI have been designed to monitor dielectric temperature of electrical transformers.

2- TECHNICAL DATA

2.1 Housing

Housing in composite *Ratings:* IP 56, IK 07
Housing cover in composite with 4 screws that can be sealed by lead *Ratings:* IP 56, IK 07
Wiring output through M20 stuffing box with anchor *Tighten capacity:* 7,5–13 mm
Wiring through terminal block *Tighten capacity:* 2,5 mm² (6 terminals)

2.2 Thermostats

- 2 independent fluid expansion thermostats *Bulb diameter:* 6,5 mm

- Ambient temperature compensation
- Change-over contacts
- Setting scale: 40–140°C
- Setting accuracy: ±2,5°C
- Measure accuracy: ±3°C at 60°C, ±1,5°C at 90°C

TECH. INSTRUCTIONS	Page	Nr. T/NOT-0002	Data: 21/02/2022	Rev.
TDC & TDCI	2	INF. 1/1101-0002	Date: 21/03/2022	3

2.3 Thermometer (TDCI only)

- 1 fluid expansion thermometer *Bulb diameter:* 6,5 mm

Indicator diameter: 50 mm

- Ambient temperature compensation
- Tracking pointer indicating maximum temperature reached
- Display scale: 30–150°C
- Measure accuracy: ±4°C at 60°C, ±1,5°C at 90°C

2.4 Fitting

- M22 x 1.5 male thread (fine-pitch) in nickel plated brass at the base of the housing, with O-ring type seal and bulbs protection spring

2.5 Operating conditions

- Ambient temperature: -30°C to 65°C

- Dielectric temperature: ≤ 140°C

2.6 Breaking capacity

Current	Resistive load L/R < 40 ms	Inductive load
24 VDC	5 A	3 A
48 VDC	3 A	4 A
127 VDC	1 A	1 A
127 VAC 50/60 Hz – cos φ 0.5	15 A	0.5 A
250 VAC 50/60 Hz – cos φ 0.5	15 A	3 A

TECH. INSTRUCTIONS	Page	Nr. T/NOT-0002	Date: 21/03/2022	Rev.
TDC & TDCI	3	INF. 1/1NO1-0002	Date: 21/05/2022	3

3- INSTALLATION

3.1 Preamble

The following installation procedure is given for information only. Automation 2000 cannot be held responsible for its execution.

3.2 Installation precautions

Before installing TDC or TDCI, make sure that:

- Transformer is not powered.
- Transformer dielectric is at ambient temperature (approx. 20°C).
- Transformer opening on which TDC or TDCI will be installed is opened.

3.3 Hermetically sealed transformer installation procedure

- Mount TDC or TDCI in the thermowell designed for that purpose.

TECH. INSTRUCTIONS	Page	NET TANOT 0002	Data: 21/02/2022	Rev.
TDC & TDCI	4	Nr. T/NOT-0002	Date: 21/03/2022	3

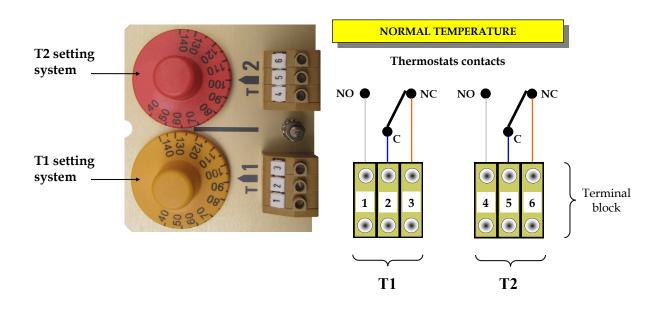
4- ELECTRICAL OPERATION

4.1 Preamble

All TDC and TDCI come with change-over contacts, with a Normally Opened contact, a Normally Closed contact and a Common point.

In the following diagrams, contacts are shown unpowered (dead), meaning not under the influence of any defect.

4.2 Operating diagram


Temperature elevation is due to:

- an electrical defect inside the transformer tank causing a localized heating;
- an intensive transformer use (overcharge).

Temperature is monitored by two independent fluid expansion thermostats with ambient temperature compensation.

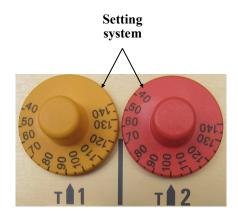
When the dielectric temperature reaches the set-point value (±2,5°C), the thermostat contacts close.

Temperature set-points are defined by the transformer manufacturer.

TECH. INSTRUCTIONS	Page	N. TANOT 0002	Data: 21/02/2022	Rev.
TDC & TDCI	5	Nr. T/NOT-0002	Date: 21/03/2022	3

5- TESTS

5.1 Precautions


Before carrying out the tests, make sure:

- That the transformer is not powered.
- To carefully check the wiring system.
- That the electric interlocking system is powered so that the loops can be tested up to the final element (e.g. LED for alarm function, actuators for trigger function).

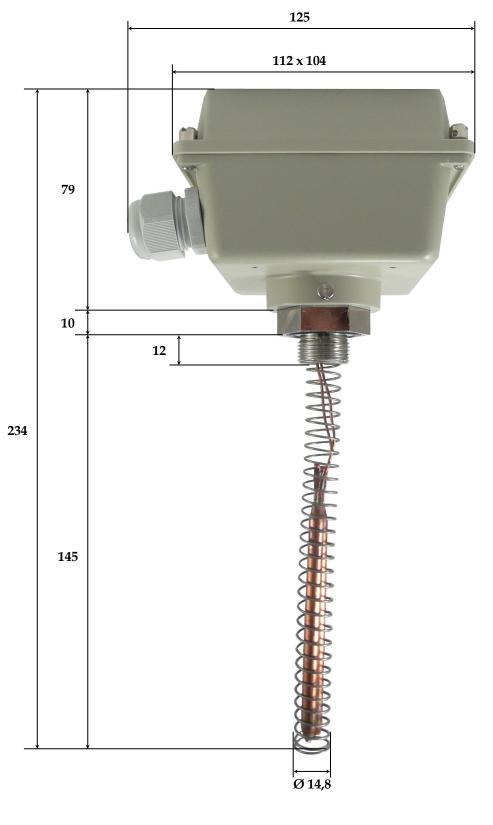
5.2 Temperature

Elements concerned: T1 and T2 thermostats

- Turn the setting system below 40°C.
- The contact mechanically changes position.
- Check that the loop is operating correctly, then reset the T1/T2 setting system at the desired values.

WARNING

When you make tests by shunting the terminals, you are testing the cable and not the device.


TECH. INSTRUCTIONS	Page	N. TANOT 0002	Data: 21/02/2022	Rev.
TDC & TDCI	6	Nr. T/NOT-0002	Date: 21/03/2022	3

6- SPATIAL REQUIREMENT

6.1 TDC



TECH. INSTRUCTIONS	Page	Nr. T/NOT-0002	Date: 21/03/2022	Rev.
TDC & TDCI	7	INF. 1/INO1-0002	Date: 21/05/2022	3

6.2 TDCI

TECH. INSTRUCTIONS	Page	NET TANOT 0002	Data: 21/02/2022	Rev.
TDC & TDCI	8	Nr. T/NOT-0002	Date: 21/03/2022	3

7- OPTIONS

PT: Pt100 sensor

The TDC[®] or TDCI[®] is equipped with a Pt100 sensor 100 Ω at 0°C (138.5 Ω at 100°C). It is connected to an independent terminal block with 3 wires. This sensor enables to remotely control the dielectric temperature.

PTC: 80°C PTC thermistor

The TDC[®] or TDCI[®] is equipped with a 80°C Positive Temperature Coefficient thermistor. It is connected to an independent terminal block with 2 wires. As an example, this thermistor can send a signal to the cooling fans' controller.

TECH. INSTRUCTIONS	Page	N. TAIOT 0002	Data: 01/02/2002	Rev.
TDC & TDCI	9	Nr. T/NOT-0002	Date: 21/03/2022	3